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An analytical investigation of shape, stability, and evolution of traveling and static solitary states—
autosolitons (AS)—for the Rinzel-Keller-Koga-Kuramoto (RKKXK) model of active media was carried
out. The dependencies of the velocity and width of a traveling autosoliton on the bifurcation parameter
at different ratios between characteristic lengths and times of activator and inhibitor were analyzed. It
was shown that the traveling autosoliton loses stability at a velocity greater than those at which the cor-
responding solution disappears. It was found that the ASs velocity may become zero at some value of
the bifurcation parameter, i.e., the traveling autosoliton transforms into a static one. At the same bifur-
cation point the static autosoliton loses stability with respect to the growth of fluctuations, which leads
to the formation of a traveling or pulsating autosoliton. Transitions between traveling and static auto-
solitons are accompanied by hysteresis. It was also shown that besides this bifurcation point at certain
parameters a “tricritical point” exists where the bifurcation of solutions in the form of traveling, static,

and pulsating autosolitons is realized.

PACS number(s): 05.70.Ln, 05.90.+m

I. INTRODUCTION

Interest in nonlinear phenomena in various nonequili-
brium systems is growing. One of such striking phenom-
ena is the formation of different dissipative structures [1]
and autowaves [2], including static, pulsating, and travel-
ing solitary eigenstates, so called autosolitons (ASs)
[3-5].

It can be presumed from the general theory of ASs
[3,4] that there may exist nonequilibrium systems where
static, pulsating, and traveling ASs can be excited simul-
taneously. One of the goals of the present paper is to
prove this presumption. For this purpose we will analyze
the classical Rinzel-Keller-Koga-Kuramoto (RKKK)
model of active media with diffusion, which has an exact
analytical solution.

The RKKK model is described by the following equa-
tions:

30 _ 2980 _ —H(A—
T"at ) a2 [6+n—H(6—A4)], (1)
M _ 2% _
Tn ot L ac? n+6, (2)
where
B 1, 6= 4,
H(6— A)= 0, <A . (3)

6 and 7 are state variables (temperature, density, etc); 6
and 7 being activator and inhibitor, respectively [3,4].
For L <<! (more correctly, L =0) Eqgs. (1)-(3) are the
well known Kinzel-Keller model admitting solutions in
the form of traveling ASs [6,7]. Koga and Kuramoto in-
vestigated Eqgs. (1)—(3) in another limiting case, L >>1 [8].
They showed that for L >>1 Egs. (1)-(3) admit solutions
in the form of static or pulsating ASs depending on the
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ratio of the parameters 74 and 7,. The evolution of such
ASs and other more complex dissipative structures is
considered in [8-12] (see also [3-5]).

As follows from the general theory of ASs [3,4] the dis-
sipative structures and autowaves (in particular, static,
pulsating, and traveling ASs) may in principle coexist
when the system’s parameters lie within some narrow re-
gions, in particular, when a=7y/7,<<1 and
e=1/L << 1. To find these regions for the RKKK model
we will analyze different types of solitary states and their
stability for arbitrary ratios L /I and 74/7,. Most atten-
tion will be concentrated on the traveling ASs because
static AS behavior was investigated in [8-11].

II. SHAPE OF TRAVELING AUTOSOLITONS

To analyze the shape of an AS traveling with constant
velocity V let us consider automodel solutions of Egs. (1)
and (2) in the form 6(x —Vt), n(x —Vt). Substituting
them into Egs. (1) and (2) and using the dimensionless
variables

VT
x ! and v=—2 , 4)
I To I

= —p—

we can rewrite these equations in the convenient form

do _d* _ H(e—

VaE = ag [0+n—H(6—A4)], (5)
_idn_ _,d?

—a lv—d—g-—e 2d—§’21+9—n. 6)

A solution describing a traveling AS in infinite media
must satisfy the following boundary conditions:

Ole=t o =nlg=1=0, D

since the system becomes homogeneous (1=m,=0,
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FIG. 1. Qualitative shape of
traveling autosolitons, corre-
sponding to Eqs. (A3) and (A4),
for two limiting cases: (a) large
drift length of the inhibitor
(e2>>a, a<<1); (b) large
diffusion length of the inhibitor
(e<<a<<1).

6=0, =0) far from the center of the AS. Note also that
at v =0 and e<<1 the problem (5)—(7) describes the
shape of static ASs [8,9].

A detailed analytical investigation of problem (5)-(7) is
carried out in Appendix A. According to Egs. (A3) and
(A4), the shape of a traveling AS is determined by the ra-
tio between the drift (L =V7,=va™'l) and diffusion (L)
lengths of the inhibitor. When I >>L (a <<ev) the shape
of the traveling AS is essentially asymmetric and differs
qualitatively from the shape of a static AS. In this case
the minimum velocity of the AS v ,~Va
=1/7¢/7,<<1 (see Sec. III). Therefore the condition
L=Vr,>L is obviously satisfied when a <<e?<<1. As
follows from Eqgs. (A3) and (A4), in this case the distribu-
tion of activator (&) varies nonmonotonically in the re-
fractive region [at § <a in Fig. 1(a)] and monotonically
ahead of the ASs front wall [at £> b in Fig. 1(a)].

When L <L the shape of the traveling AS [Fig. 1(b)] is
similar to that of the static AS. As the maximum veloci-
ty of the AS v,,,, <2/V'3 [see below Eq. (12)], the condi-
tion L <L is valid when e<<a. As follows from the
analysis of Egs. (A3) and (A4), unlike the previous case,
for e <<a<<1 the distribution 6(§) is essentially non-
monotonic both in the refractive region [at £ <a in Fig.
1(b)] and ahead of the ASs front wall [§£>b in Fig. 1(b)].
These results are in agreement with the conclusions of
the general theory of ASs [3,4].

III. VELOCITY AND WIDTH OF
TRAVELING AUTOSOLITONS

First let us consider the case a <<g*<<1, i.e., when the
drift length of the inhibitor L=V, >>L but L >>1. At
small velocities v <<1 as follows from Eq. (A9) the width
of the AS L =b —a is determined by the equation

B+y)l—e~4)
1+0.5(1+y)e £’

where y =v2a~!. Equation (8) admits solutions if

y=v2a”!>1. Therefore the minimum velocity
Umin > V'a. Note that this result obtained for a <<1 and
L >>1 coincides with those obtained earlier in [6] for the
case a << 1 but L <</ and confirms the conclusions of the
general theory of traveling ASs [3,4].
Substituting of Eq. (A3) into Eq. (A8) yields
2

L=0.5

(8)

al

v

a

A4=0.5(1—e %) [1+0.50+1.5% -3
v VE

9)

Equation (9) together with Eq. (8) determines the depen-
dencies v( A4) and .L( A) shown in Figs. 2(a) and 2(b), re-
spectively. The width and velocity of the AS decreases as
A is reduced, and at a certain 4=A4_;,~0.5 when
L =1 and v,,;, =V a the solution in the form of a trav-

@ Y ® ¢
14
FIG. 2. Dependencies of the
2x10° - speed (a) and the width (b) of the
traveling autosoliton on the bi-
0.5 4 furcation parameter A4 for the
case @ <<e*<<1. The results of
numerical calculations from Egs.
) (8), (9), and (A9) for e=10"2
107 1 and a@=10"° v, =2(3)"172
0.1 v, =2X10"%L, =12, 4,=0.499,
A - + N, Vmin =4X 1075, L .. ~1, and
2x10~ 1% 10 g, A pin =0.29.
Vmin f————————-————— -~ Lrnin | = o o e — = -_
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eling AS disappears (Fig. 2). One can also find from Egs.
(8) and (9) the velocity v =v, and width L=., at the
point 4 = A, wheredv/dA=co andd.L/d A= :

vy =Aa'’?, L,=In(v,a )=In(ra"?,

1 al”? 1 3al? a
11 1 +22 3 10
A= . 1+ 1 o g | 10
1/2
-2 n(ha”172) .

A

It should be mentioned that the width and the velocity
are measured in units of / and / /7, respectively. In Eq.
(10) the coefficient A is a numeric factor weakly depen-
dent on the value of a, for example, A=2.2 for a= 1072
and A=6.3 for @=10"°. The L, in turn weakly (loga-
rithmically) depends on A, so one can set in Eq. (10), for
instance, A=23 and assume

L, ~In(3a"172) . (11)

Now let us consider the case of high AS velocities. As
follows from Eqgs. (A5), (A6), and (A9), when 4 —0.25
the width of the AS £ — o and its velocity reaches a
maximum,
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v =2(3)"172

max

(12)

Note that for 4=0.25 the traveling AS, as well as the
static one [3,4,9], takes the shape of a complex domain
wall where 0(£) and 7(£) are given by Egs. (A3)-(A6)
with (b —a)=o and a<<e*<<1. In other words, the
value of v ., (12) determines the propagation velocity of
such a domain wall.

Thus we have shown that in the case a <<g*<<1, i.e.,
when L >>I but L= V7,>>L, the velocity and width of
the AS for the problem (3)-(5) lie within the ranges
Vasv<23)"'? and 15.L=< o (Fig. 2), respectively.
These results practically coincide with those obtained in
[3,6,7] for the case a <<1 and e=I!/L = (L =0) when
the inhibitor’s diffusion can be neglected.

Now let us consider the case £? <<a <e<<1 when the
inhibitor’s diffusion is essential, and the function v( A4)
depends on the ratio B=¢/a (Fig. 3) and differs qualita-
tively from the v(A4) dependence for a<<e*<<1 [Fig.
2(a)]. The function v( A) is given by the transcendental
equations (A10) and (All) obtained from Eq. (A9) for
g?<<a<g<<1. As follows from the analysis of Egs.
(A10) and (A11), the velocity of the AS increases as its
width grows. At L — o, i.e., when 4 —0.25, the veloci-
ty of the AS approaches its maximum value,

<

()
b

FIG. 3. Dependence of the
speed of the traveling autosoli-
ton on the bifurcation parameter
A for the case e*<<aSe<<l
for different values of B=¢/a.

@ Results of numerical calcula-
Vi tions of Egs. (A10) and (A1l).
Curve a: B=3.1,0,,=0, 4,

d
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0.50 A =0.2543, 0{@=0.16, A=

0.2545, and v{%, =0.47. Curve

0.5

(a)

0.0
0.250

b: B=28, vyin=0, A2, =0.397,
vi9=0.185, A{"=0.425, and
vl =1.149. Curve c¢: B=360,
Vmin =0, 45, =0.47,v{9=0.02,
Af9=0.485, and v, =1.1546.
Curve d: fB,=2%v..,=0,
AP =0.487, v}=0.0125, A\
=0.496, and v'%, =1.1547.
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v =2VB—8 VB -8 _ 2 (1—8a22)1”2
max ‘/3 B ‘/3 .
Therefore, when € <<1, the traveling AS can exist only
when

(13)

a<273% . (14)

Note that when B=ea ! >>8 Eq. (13) transforms into
Eq. (12) which is valid for a <<e*<<1. Figures 3 and 4
show the dependencies v ( 4) and .L( 4) obtained by com-
puter calculations from Egs. (A10) and (A11) for several
values of the parameter 3.

We would like to emphasize that, as follows from the
analysis of Eq. (A10) in the considered case the velocity
of the AS becomes zero at 4 =A_;, (Fig. 3) while the
width of the AS remains finite, equal to .£;, (Fig. 4). In
other words, at the point 4 = A4 _;  (A4_. depends on the
parameter B=¢ea ') the traveling AS spontaneously
transforms into a static one. This means that, if the con-

dition €2 <<a <& << 1 holds, an entirely new type of bifur-
cation occurs. A4 = A, is the point where bifurcation
of two qualitatively different classes of solutions—the
static and automodel ones—takes place (Fig. 5).

To estimate the values of A4;, and L, let us express
Egs. (A10) and (A11) as a power series in v <<1. Retain-
ing the terms to v? we obtain

A=Ay, +v¥B2X0.015[(1—2vV2B7 1)z

—2v2B87 (1+2)7?], (15)

where
A, =0.25[1+(1—2V2B" ) (1+2)7"]. (16)

It also follows from Eq. (A10) that for v —0 the width of
the AS is determined by the equation

1—2V2B 7 '=e "(1+z,), z,=V2L,_, /L . 17

=ie
J

(c)

(o[

gnﬂn

b
() (d)

Q min

FIG. 4. Dependence of the
width of the traveling autosoli-
ton on the bifurcation parameter
A for the case e*<<aSe<<1
for different values of B=¢e/a.
g‘;? Results of numerical calcula-

|
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tions from Egs. (A10) and (A11).
Curve a: B=3.1,L8 =3L,
A9 =0.2543, £L19=3.1L, and
A}¥=0.2545. Curve b: B=28,

T
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L) =0.38L, A%, =0.397, L
=0.8L, and A{®=0.425.
Curve ¢: B=360,.L{),=0.092L,
AL =0.47, LP=0.3L, and
A= 0.485. Curve d:
B.=2193, L4 =0.045L, A2,
=0.487, L{#=0.2L, and
A{9=0.496.
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FIG. 5. Dependence of width of static (curve e) and traveling
(curves b—d) autosolitons on bifurcation parameter 4. Num-
bers 1-5 indicate various bifurcation points. 1, the bifurcation
point. of solutions in the form of narrow pulsating and static
ASs with width L=.,; 2, the boundary point; 3, the bifurca-
tion point of solutions in the form of wide pulsating and static
ASs with width £L=._; 4, the bifurcation point of unstable
solutions in the form of static and traveling ASs; 5, tricritical bi-
furcation point of static, pulsating, and traveling ASs. Curves
b—d correspond to the same curves in Fig. 4. (Dashed line indi-
cates the portions of the curves which correspond to unstable
static ASs for B=f..)

Equation (17) has solutions if the inequality (14) holds,
i.e., when 8>1 and z,, <1. Let us expand the right side
of Eq. (17) in power series in z,,, retaining the terms up to
z2. After some algebra for B> 16 we find

Ly =27 . (18)

min

As follows from Egs. (15)—(18) for #>>1, in dimensional
units

A =0.25[1+exp(—2%4B~ /)], (19)
— 10 s o | 2
V=t—= A—Apn) |[— | 20
Ve LA """)Le’ (20)
L—L =454 — AL . (21)

The formulas (20) and (21) are valid only when A4 is close
to A, Two signs in Egs. (20) appear due to the sym-
metry of the problem (5)—(7) with respect to inversion of
the x axis. According to Egs. (18)-(21) L, decreases
and A,_;, approaches 0.5 with increase of B=¢/a (Fig.
4).

IV. STABILITY OF TRAVELING AUTOSOLITON

An analytical investigation of the stability of the trav-
eling AS is carried out in Appendix B. Its results essen-
tially depend on the ratio between a and ¢.

In the case of a <<e* we can calculate AA; and AQ,
from Egs. (B11) and (B12) with accuracy up to the first
power of I' << 1 and write Eq. (13) in the form

(y_3)(a1/2_y1/2e—£)=ue—_Cyl/Z , (22)

where, as before, y =v?a !, and L =b —a. Using Eq. (8)
one can obtain from Eq. (22) that on the stability thresh-
old (A4 = A4,) the critical width and velocity of a travel-
ing AS are approximately

12L-3 2L—3
~ 1 =
L.=~In |v,a 73 ] L, +1n 73 |’ (23)
— L—2
v, ~v, +a(v,) lIn ZI::;‘ , (24)

where v, and L, are the velocity and width of the AS at
the point 4 = A, where dv/dA=o and dL/dA=w
(Fig. 2). Approximate values of .L, and v, are given by
Egs. (10). According to Egs. (10), in the case a <<&* and
a<107% the £, >3. In view of this fact we obtain from
Egs. (23) and (24) that the stability threshold of the trav-
eling AS lies above the points L, and v, of curves v(4)
and .L( A) (Fig. 2).

Thus in the case a << 1,e* the traveling AS loses stabili-
ty with a change of bifurcation parameter 4 when its
width L=L_ and velocity v=v, exceed the critical
values of £, and v, by values of order of themselves.
Note that this result also holds for the case L =0. At the
same time, in this case the AS’s velocity has a lower limit
(see Sec. III), i.e., the value v, 70 [Fig. 2(a)]. In other
words, the traveling AS does not transform asymptotical-
ly into the static one at any A4.

In contrast to this, in the case e? <<a <e<<1 (see Sec.
III) the velocity of the traveling AS becomes zero at a
certain 4 = A_; (Fig. 3). In other words at 4 — A4 ;.
the traveling AS asymptotically transforms into the static
one. This means that the curve .L( 4) corresponding to
the traveling AS (curves a—d in Fig. 4) links with the
curve .L( A) for the static AS at point 4 = A4;, where
L=L_, (in Fig. 5). The dependence .L( A) for the static
AS is determined by Egs. (A3) and (A4), if we set v =0,
£=a, and use that 8(a)= A, L=a —b (see also the equa-
tions obtained in [9,3]).

It seems natural that when A is close to the point
A = A, the traveling AS is unstable if this point lies in
the instability region of the static AS (Fig. 5). So we shall
analyze the stability of the static AS in the case
e?2<<a<e<<1 on the basis of the results presented in
[3,9,10].

V. CONDITION FOR SPONTANEOUS FORMATION OF
TRAVELING AND PULSATING AUTOSOLITONS

To analyze the stability of the static AS it is convenient
to use the dependencies of the AS width or the value of
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the inhibitor in the AS wall (i.e., the value of
1n(x)|,—,=ns)) on the bifurcation parameter A [3,4].
The dependencies .L(A4) and 75( A) are determined by
Egs. (A3)-(AS) if we set £=a, v =0, and use 6(a)= 4,
L=b—a.

These dependencies are analyzed in [9] and their form
is shown in Figs. 5 (curve e) and 6. The values of
ng <0.25 correspond to a so-called “hot” static AS [3,4].
The value of the activator in its center is greater than in
its periphery [6(0) > 6, =0].

When A4 —0.25 the value of 73—0.25 and £L— .
At the point 4 =0.25 (point 6 in Fig. 6) the hot AS takes
the shape of a complex domain wall, whereas for
A =0.25 and n¢>0.25 it transforms into a “cold” AS.
The value of the activator in the center of a cold AS is
smaller than that in its periphery [6(0) <8, =0.5].

Substitution of £=a and v =0 into Egs. (A4) and (A5)
for e<<1 yields the relationship between 7mg and the
width of the “hot” AS

1s=0.25 |[1—exp[—eV2L] | . (25)

According to the general theory of ASs [3,4] and the
results of investigations of the RRRK model [9,10,3] the
stability region of hot ASs with respect to aperiodic per-
turbations with ImI'=0 corresponds to the portion of
curve 7g5( 4) in Fig. 6 between points 2 and 6 (6 and 2’ for
cold ASs). The lower branches of these curves in Figs. 5
and 6 (for the smaller values .L and 7g) up to the point
A=A4,, where dL/dA = and dng/dA= o (point 2
in Figs. 5 and 6), correspond to the unstable hot static AS
regardless of o and ¢.

The analysis of stability of the static AS for the RRRK
model with respect to perturbations with ImI" = @+#0,

g
0.5 — ===
2'.'—-—_
L
\3.
0.25 \‘
$3
\\1
\
2
_7
(1} [ A I
0 A, 0.25 A,05 A

FIG. 6. Dependence of 75 (the value of the inhibitor in the
wall of a static autosoliton) on bifurcation parameter 4. Points
2 and 2’ are the stability boundaries with respect to aperiodic
perturbations of “hot” and ‘“‘cold” ASs, respectively. Point 6
corresponds to 4 =0.25 when .L = . Points 1 and 3 are stabil-
ity boundaries with respect to pulsations of “hot” ASs; points 1’
and 3’ are those for “cold” ASs. Bifurcation points 1-5 corre-
spond to points 1-5 in Fig. 5. (Dashed line indicates the por-
tions of the curves which correspond to unstable static ASs for

B=B.)

i.e., pulsations, is carried out in Appendix C. The general
conditions for spontaneous formation and the shape of
pulsating ASs were analyzed in [3,4,13,14] and for the
RRRK model in [8,3]. The properties of pulsating ASs
in different models were investigated in [15-17,3,4].

Equation (C7) determines the stability threshold with
respect to the growth of a critical fluctuation, describing
a small change of the distance between AS walls. The
growth of this perturbation (varying with the frequency
®,70) can lead to the formation of pulsating ASs [3,4].
As follows from Eq. (C7) for a <e <<1, the static AS be-
comes unstable (Imw <0) with respect to perturbations
with frequency

a)=:twczi2£1/2[31/6(1'07',,)—1/2 , (26)

both when its width is less than

Ly, =11n[2(e?a)" 1] 27)
and when the width is greater than
L,~(a/8)*L=(88)"1°L . (28)

Note that Egs. (26)—(28) are written in dimensional
units and are valid for e=1/L <<1and a=7y/7,<<1. It
should be emphasized that Eqgs. (26)—(28), which deter-
mine the frequency of pulsations and the critical widths
of static ASs, are in good agreement with the estimations
for the values w,, £L,,, and L, obtained in the AS gen-
eral theory [3,4]. The width .L,, corresponds to the
point 1, and £, corresponds to the point 3 (or 4) of the
curve .L( A) (Fig. 5, curve e). In other words, the points
1 and 3 (or 4) are the points of bifurcation of solutions in
the form of one “hot” static AS and two ASs pulsating in
antiphase with frequencies w==tw, according to Eq.
(26).

Equation (25) corresponds to the minus sign in Eq.
(C1), i.e., it determines the stability of the static AS with
respect to the growth of a fluctuation 86,(x, ), describing
a small translation of the AS along the x axis. Aperiodic
growth of this fluctuation (with frequency w=0) deter-
mines spontaneous formation of the traveling AS. Equa-
tion (25) has two solutions. The first solution is trivial:
0=0, i.e., [=0. It satisfies Eq. (25) for any value of .L
and is a consequence of translational symmetry of the
problem (5)—(7) [3,4]. We can derive the nontrivial solu-
tion of Eq. (25) assuming 1<<.L <<e~! and expanding
the expression (2+iwa~!) into series in iwa~! where
lioa™ 1 <<1. As a result, retaining the terms up to the
second power of iwa ™!, we obtain

F'=—io=4aB[2aB'?% Y(eL)72—1]. (29)
As follows from Eq. (29) when
L>L , =234712L (30)

the fluctuation 66, grows periodically, leading to the
spontaneous formation of a traveling AS. This is also
confirmed by the fact that the condition (30), as can be
seen from (18), coincides with the point 4 = A4 ; where
the velocity of the traveling AS goes to zero, i.e., where
the traveling AS transforms into the static one.
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As follows from the above analysis and the form of
curves L( A) for the traveling and static ASs (Fig. 5), the
spontaneous transformation of the static AS into the
traveling one and vice versa occurs abruptly and is ac-
companied by hysteresis.

VI. TRICRITICAL POINT AND CONDITIONS
FOR COEXISTENCE OF STATIC, PULSING,
AND TRAVELING AUTOSOLITONS

It was shown in Sec. III that in the case e? <<a <e<<1
bifurcation of solutions in the form of static and traveling
ASs occurs at a certain 4 =A_; which depends on
B=¢/a (Fig. 5). As follows from the results of Sec. V, at
certain values of the parameter B the point 4 =4,
may lie in the instability region of the static AS with
respect to the spontaneous formation of the traveling AS.
At other values of B the point 4 = 4 ;  may lie in the in-
stability region of the static AS with respect to the spon-
taneous formation of the pulsating AS (point 4 in Fig. 5).
Therefore, at certain S=f3, the bifurcation points of solu-
tions in the form of traveling and static ASs and also in
the form of static and pulsating ASs coincide with each
other.

Hence, at B=pf,, a tricritical point appears where the
bifurcation of solutions in the form of static, pulsating,
and traveling ASs takes place (point 5 in Fig. 5). At this
tricritical point the minimum width of the traveling AS,
L i must coincide with the critical width of the static
AS, such that it becomes unstable with respect to pulsa-
tions.

We have shown that at the bifurcation points of static
and pulsating ASs the critical width is either £, or .L,
which are given by Egs. (27) and (28), respectively. Note
that Eqgs. (27) and (28), as well as formulas (18) and (30)
determining the quantity of .L_;,, are obtained for
g2 <<a<e. When this condition is fulfilled, a correct
solution exists only when (18) is equal to (28). This equal-
ity is valid at =B, =2'"°~1400. At 8=, the condi-
tion eB=e?a ! << 1, such that Eqgs. (18) and (28) are val-
id, is fulfilled when £ << 1073,

Therefore, when £=2!%%a¢ <<1 at the point 4 =4,
= A i, the bifurcation of solutions in the form of static,
pulsating, and traveling ASs is realized (point 5 in Figs. 5
and 6). According to Egs. (28) and (19) the critical width
of the AS, £L=L{¢) | and the value 4 = 4% at this tri-
critical point, are equal to

L =270, A =0.25[14+exp(—%)]. (31
VIL. CONCLUSION

The main results of our analytical investigation of the
RKKK model can be summarized as follows.

(1) Traveling ASs can appear when a=Te/7,<<1,
where 74 and 7, are the characteristic times of variation
of the activator 0 and inhibitor 7, respectively. The ve-
locity of traveling ASs decreases as the inhibitor’s
diffusion length L increases. No solutions in the form of

traveling ASs exist at any 4 when e=1/L <23%a (I is
the activator’s diffusion length). These results are in
agreement with the conclusions of AS general theory
[3,4].

(2) When a <¢&*, independently of €, the solution in the
form of a traveling AS disappears at the point 4 = 4,
where dv/dA =0 and dL/dA=o (Fig. 2). At this
point the AS velocity is equal to the finite value
v, =a'”?l /7,. However, the traveling AS becomes unsta-
ble when its velocity is higher than v,, i.e., at a certain
A=A, less than 4,. When 4 —0.25 the width of the
traveling AS £ — o, and its velocity reaches its max-
imum v, ~2X37 VX1 /7).

(3) When €2 <<a Se<1 the velocity of the AS goes to
zero at a certain 4 = A, , i.e., the traveling AS trans-
forms into the static one. On the other hand, at the point
A = A, the static AS becomes unstable with respect to
the spontaneous formation of traveling or pulsating ASs.
In other words, the bifurcation of solutions in the form of
static and pulsating or traveling ASs occursat 4 = A4 ;.

At B<B,=2'"3 the bifurcation point 4 = A4, corre-
sponds to the instability region of static ASs with respect
to pulsations (point 4 in Fig. 5). At > 3., or more ex-
actly when e?<<a<egf; !, this bifurcation point corre-
sponds to the instability region of the static AS with
respect to the spontaneous formation of a traveling AS.
In this case solutions exist in the form of two pairs of
traveling ASs in the vicinity of this point (4 = A4, in Fig.
5). Two ASs in the same pair differ from each other by
the direction of their velocity only.

4) At B=8,, i.e., £=2103¢ << 1, a tricritical point ap-
pears (point 5 in Fig. 5), where the bifurcation of three
solutions in the form of static, pulsating, and traveling
ASs occurs.

(5) In certain ranges of B and 4, close to B, and 4'%),
solutions in the form of two static, four traveling, and
two pulsating ASs exist (at 4 = A4, in Fig. 5). Only some
of these solutions are stable.

When B and 4 are close to B, and A4S, respectively,
i.e., in the vicinity of the tricritical point (5 in Fig. 5), it is
possible to excite the static, pulsating, and traveling ASs
simultaneously. To prove this statement it is necessary to
show that the supercritical bifurcation mode of solutions
describing the small amplitude AS pulsations occurs at
the point A = A _;,. Such an analysis may be carried out
on the basis of the multifunctional variational method of
description of ASs and other dissipative-structure dynam-
ics in active nonequilibrium systems developed in [18].

APPENDIX A

Due to piecewise linearity of the problem (3)—(5), we
can use the operator method, which was applied in [9,10]
for investigation of static autosolitons. After the Fourier
transform of each term in Egs. (3) and (4), we get a set of
algebraic equations in terms of Fourier images. From
this set we find that
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(0*+e*—jova 'e})[exp(—jwb)—exp(—jwa)]

Ow)=— , (A1)
jo{(0®+1—jov)w?*+e*—jova 'e?)+e%)
f(w)e?
Hw)= . (A2)
K o?+e*—jovale?
Taking the reverse Fourier transform, we obtain
T N S BL R
06)= 1A,07 e TV A 0 B4 A,05 e T T a0 M rous, a<g<p, (A3)
A le T METP TR gy ot TEE S0y
My T My SO 06y
nEe 2= 1Me T4 Mue BT e T M, M T 105672, a<e<b, (A4)
Mye BP0 T ey ey

where the values Q; (i =1, . .
equation

(1—Q2+vQ)e2—Q2+vyQ)+e2=0,

. ,4) are the solutions of the

(AS)

Q, and (1; being the positive solutions and 2, and Q, be-
ing the negative solutions;

—Q}+vyQ; +¢? 1
A= y Mi=—or— | (A6)
H jS Q; H jS
JjFi J#Fi
Q;=Q;,—Q;, y=¢a . (A7)

The values of £=a and £=b in the solution of Egs.
J

v[(1++22 ") 7122287 (1 + 2428722 72) " 1/?]

(A3) and (A4) are the points where (&) equals 4, i.e.,

6(a)=06(b)=4 . (A8)
Using Eq. (A3), we can rewrite Eq. (A8) as follows:
4 .
S (— 1A Q7 [1—exp(—Q;[.L)]=0, (A9)

i=1
where L =b —a is the width of the AS. Assuming v =0
in Egs. (A.3)-(A.9), we obtain the solution in the form of
the static AS studied in detail in [8—10] (see also [3,4]).

In the case e2<<a <e<<1, using Egs. (AS5)-(A7), we
can transform Egs. (A9) into

=exp[ —z(1+v*273)2][v cosh(v)(1++?z ~2) " /242 sinh(v)]

—exp[—ze M1 +vB7 %z ~2)1721[4v2V2B L cosh(ve !B 1)+ (1+2v2B 2z ~2)!2sinh(ve " 17 1)]

X(1+2v87%27 %) 712,

where z=V2(L /L), v=vB(L/2L), and B=¢ea "

Equation (A8), or more precisely the equation
0(a)= A, can be rewritten
-1/2 172 -1
1 v? v? v
= — —_ +_ .
4 2 I+ 4 ll 4 2
) —1/2
v v
—— |1+—= |1+ —
4 z 22 ]
, 1172
v
X {l—exp v—z {1+—5J ] ] . (A11)
z

Equations (A10) and (A11) determine the dependencies of

(A10)

width and velocity of the traveling AS on the model’s pa-
rameters.

APPENDIX B
To investigate the stability of the traveling AS in the
one-dimensional case, let us linearize Egs. (1) and (2) and

boundary conditions (7) with respect to fluctuations of
the following type:

8O(E,1)=50(£)exp —ﬂ] ,
To

51(&,t)=>8n(&)exp ——TI:EJ R (B1)
6
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in the vicinity of the automodel solution €(&£),n(£) of
these equations. We obtain

d ., d° 50

vd§86+ £ 86=(1—l‘)80+8n—8(9—_/‘) , (B2)
a0-Dsnte29 sn=(1—a-'Toy—80,  (BY)
dg dg
860(£)=0, d9(§)=0 for £t . (B4)
Here 6(6— A) is Dirac’s delta function,
v=V—Tlﬂ, g=§—u—7’;. (BS)

It follows from an analysis of Egs. (B2)—(B4) similar to
that in [10] for a static AS that critical fluctuations of the
activator 80(£) are localized in the walls of the traveling
AS, i.e., in the vicinity of the points {=a and {=b in Fig.
1. The most dangerous fluctuations 86, and 86, describe
a small change of the distance between the AS walls or its
small translation along the x axis. Solutions of Egs. (B3)
and (B4) are rather unwieldy. For this reason we will

only analyze the equations which link the quantities
80'§=a:800 and 89|§=b=86b N (B6)

i.e., the values of the activator’s fluctuations in the AS
wall. Carrying out transformations similar to those used
for the derivation of Egs. (A3) and (A4) we obtain

86,(AA,+AA,+ Ayge " + Agge M)

’
a

= —80,—— (AL + A1), B
16} |
80,(AA+AA+Ae T+ Aye )
|6 - -
=—50, f’I(Ale M1 ae ™ B8

a

Here
9;:2_2 ;,=a:AZ"(I_QQZOLHAM“—eQ““[), (BY)
16| % - = Ao+ Ayt Ae Ay
(B10)
Ar= _Q%Hﬁ)g—n/ﬂz ’ (B11)
Ji

JFi

where y=¢’a™!, AA;=A;r—A;, AQ;=Q;r—Qy, Q;
=Q,;—Q;, and O, are the solutions of the equation

QG — Qv (1+y)—Q4F(1—T(1—y)+e2—yv?)

+Q;r(vy(1—2T)+€%)+e2+(1—T)e2—yI)=0 .
(B12)

One can see from (B11), (B12), (AS5), and (A6) that for
I'=0 the values are A;p=A;, and Q;,=9Q,, i.e., they are
the solutions of Eq. (AS5).

Let us analyze the case of an unstable traveling AS
with respect to a periodic perturbation with ImI’=0.
The case ImI'7#0, i.e., the instability of the traveling AS
with respect to periodic perturbations (pulsations), will be
discussed below.

When ImI’=0 on the instability boundary where
ReI'=0, i.e., in the vicinity of the point I'=0, in calcu-
lating the values AA; and AQ; we may retain only the
terms up to the first power of . The set of Egs. (B7) and
(B8) has a nontrivial solution for I'=0 when

(Agoe ™ + Agoe ) [ AA(1—e )+ A (1—e ™)+ AN (1—e P ) + AR (1—e~ "0F)

According to (A8), the condition 6(a)=6(b)=4A4 is
satisfied at the points £=a and £=b =a +.L regardless of
the values of £ and 4. One can also see from Eq. (A3)
that 6(a) and 6(b) do not explicitly depend on the values
of A,a, and b, but only on L =b —a. Therefore

— L Agge A+ Agge M AQ— Age TAQ —Age O AQ, 1} =0.  (BI3)
|
agf L= e Agge ™"
(B16)
Mag$> =Age M4 Agge T
i.e., according to Eq. (B15),
Aoge P Agge M =Age Tt Age . B1Y)

d0(a) | AL |_ 36(b) (3L |_

oL |34 AL |94 1 (B4
i.e.,

36(a) _ 36(b) (B15)

oL oL
It is easy to obtain from Eq. (A3) that

Equation (B17) was used to derive Eq. (B13). At the
point where 96(a)/3.L=0, Eq. (B13) is satisfied. So,
when the second factor in the left-hand side of Eq. (B13)
does not become zero for large values of ., the stability
boundary is determined by the condition d6(a)/3.L=0.
Taking into account that according to Eq. (A8) the
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derivative 90(a)/dA=1, the condition 96(a)/d.L=0
can be rewritten as d 4 /3.L =0 or 0.L /3 A = oo. This sit-
uation is realized in the case of a static AS when a > 1,
for which the stability boundary is the point where
0L/0 A= [3,4,9,10]. Another situation is realized
when a << 1 both for static and traveling ASs.

APPENDIX C

An equation determining the stability of the static AS
can be derived from the condition of existence of non-
trivial solutions of Egs. (B7) and (B8) if we set v =0 and
I'=—iw in Eqs. (B7)—(B12). This condition can be writ-
ten as

AA,+AA+ Agge 7 + A e ™"

+[Agre ™ +Ae ™ 1=0. (€D

When Eq. (C1) is satisfied the considered equations
have two solutions: one symmetrical with respect to the
center of the AS, such that 86,=86,, and one an-
|

—iw=—2‘/—%~[1—exp(—VE&L)]—[Ze"L:tQ—iw)e_“

Note that for .L >>1 Eq. (C6) obtained for the case € << 1
coincides, except for designations, with Eq. (5.4) of [12],
where one should put £ =0 and B =1. It confirms the
correctness of the approach developed in [12] for L >>1
and .L>>], based on the derivation of the equations
describing dynamics of AS walls.

According to the AS general theory [3,4], for e<<1
and a<<1 the static AS loses stability when
L <<L (eL <<1). Expanding exponents in Eq. (C6) into
series with respect to €L and retaining only the first
nonzero terms, we obtain

tisymmetrical, such that 86, = —3&6,. The plus sign in
Eq. (C1) corresponds to the symmetrical fluctuation and
the minus sign to the antisymmetrical one. The first de-
scribes a small change of the distance between the ASs
walls and the second describes a small translation of the
AS along the x axis [3,9,10]. In Eq. (C1), as in Appendix
B, AA;=A;r— A, where the subscript O signifies that
the corresponding values are taken at ©=0; 3 5, 4 are
the solutions of Eq. (B12). Atv =0, '=—iw, and £ <<1
they are

Q;,=+V2e[1+io(2a) ]2,
Q,=t[1+io]?.

(c2)
(C3)

Under the same conditions, according to Eq. (B11) the
coefficients A, are equal to

Asp=—A,r=0.5¢{2[1+io(2a) ']} 712, (C4)
Air=—A4r=0.5(1—-0.5iw) . (C5)
Substituting Egs. (C2)-(C5) in Eq. (C1), we obtain
i) 20y 2¢e _ . —141/2
} ———-————(2+l_wa_l)l/2 1xexp[ —eL(2+iwa™ )'*] ;.
(C6)
[
—io=4c2L —4e(2+iva" )12 —2¢ L
_(Z_iw)e—(l+iw)l/zi , (C7)
—io=e3L[(2+ioa")2=V2]-21"*
+(2—i)] ~HAL (C8)

Equations (C7) and (C8) correspond to Eq. (C1) with the
plus and minus signs, and respectively, i.e., they deter-
mine the stability thresholds of static ASs with respect to
the growth of symmetrical and antisymmetrical critical
fluctuations.
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